Overview
Overview of all 11 supported embedding providers
Catsu supports 11 major embedding providers with a unified, consistent API.
Supported Providers
| Provider | Models | Key Features | Environment Variable |
|---|---|---|---|
| OpenAI | 3 | Industry standard, Matryoshka | OPENAI_API_KEY |
| Voyage AI | 11 | Domain-specific, multimodal, quantization | VOYAGE_API_KEY |
| Cohere | 5 | Multilingual, truncation | COHERE_API_KEY |
| Gemini | 1 | Long context, Matryoshka | GEMINI_API_KEY |
| Jina AI | 6 | Multimodal, code-specific, long context | JINA_API_KEY |
| Mistral AI | 2 | Code-optimized, quantization | MISTRAL_API_KEY |
| Nomic | 2 | Long text handling, Matryoshka | NOMIC_API_KEY |
| Cloudflare | 7 | Edge inference, BGE models | CLOUDFLARE_API_TOKEN |
| DeepInfra | 16 | Open-source models, Qwen3 | DEEPINFRA_API_KEY |
| Mixedbread | 4 | Multilingual, quantization | MIXEDBREAD_API_KEY |
| Together AI | 7 | Open-source, long context | TOGETHER_API_KEY |
For detailed model information including pricing and benchmarks, visit the Models Catalog.
Quick Examples
Using Different Providers
from catsu import Client
client = Client()
# OpenAI
openai_response = client.embed("openai:text-embedding-3-small", ["Text"])
# Voyage AI
voyage_response = client.embed("voyageai:voyage-3", ["Text"])
# Cohere
cohere_response = client.embed("cohere:embed-v4.0", ["Text"])Provider-Specific Features
# OpenAI with custom dimensions
response = client.embed(
"openai:text-embedding-3-small",
["Text"],
dimensions=256
)
# Voyage AI with input_type
response = client.embed(
"voyageai:voyage-3",
["Search query"],
input_type="query"
)
# Gemini with long context (2048 tokens)
response = client.embed(
"gemini:gemini-embedding-001",
["Very long document..."]
)Choosing a Provider
Consider these factors:
- Use case: General retrieval, code search, multilingual, etc.
- Features needed: input_type, dimensions
- Cost: varies significantly by provider
- Performance: latency and throughput requirements
- Context length: maximum input tokens
See Best Practices: Model Selection for detailed guidance.
Provider Links
Explore detailed documentation for each provider:
OpenAI
Industry-standard embedding models
Voyage AI
11 models including domain-specific variants
Cohere
Multilingual embedding models
Gemini
Google's embedding model with long context
Jina AI
Multimodal and code-specific models
Mistral AI
Code-optimized with quantization
Nomic
Matryoshka embeddings with long text support
Cloudflare
Edge-based inference with Workers AI
DeepInfra
Open-source models including Qwen3
Mixedbread
Multilingual with quantization support
Together AI
Open-source models with long context